
L&M, June 2015 – 1

Solutions of Exam Languages and Machines, 18 June 2015

Duration 3 hours. Closed book. You are allowed to use theorems from the Lecture
Notes, provided you phrase them correctly. Give clear and crisp arguments for all
your assertions.

Exercise 1 (10 %). Consider a language L over the alphabet Σ. Fill in the dots (
. . . ) with a property of machines defined in the course.
(a) L is context-free ≡ ∃M : L = L(M) and M is a . . .
(b) L is decidable ≡ ∃M : L = L(M) and M is a . . .
(c) L is semi-decidable ≡ ∃M : L = L(M) and M is a . . .
(d) L is regular ≡ ∃M : L = L(M) and M is a . . .
(e) Give all valid implications between these four assertions about L.

Solution.
(a) L is context-free ≡ ∃M : L = L(M) and M is a PDM
(b) L is decidable ≡ ∃M : L = L(M) and M is an always terminating TM
(c) L is semi-decidable ≡ ∃M : L = L(M) and M is a TM
(d) L is regular ≡ ∃M : L = L(M) and M is a DFSM
(e) L is regular ⇒ L is context-free ⇒ L is decidable ⇒ L is semi-decidable.

Exercise 2 (12 %). Let G = (V,Σ, P, S) be a context-free grammar.
(a) When is G essentially noncontracting? When is G productive? Give the two
definitions.
(b) Let the context-free grammar G be given by Σ = {a, b, c}, V = {S,D,E}, and
the production rules:

S → cE | aDb
D → Sc | ε | aE
E → bE | DD .

Use the standard algorithm to determine an equivalent productive grammar. Give
and prove all intermediate results.

Solution. (a: 3 %) G is essentially noncontracting iff its start symbol S is non-
recursive and G has no production rules of the form A → ε with A 6= S. It is
productive if its start symbol S is nonrecursive and every production rule A → v
with A 6= S satisfies v ∈ Σ or |v| > 1.

(b: 9 %) In view of the rule D → Sc, we make the start symbol nonrecursive by
adding a new start symbol T :

T → S
S → cE | aDb
D → Sc | ε | aE
E → bE | DD .

Next we determine the nullable nonterminals: D is directly nullable; therefore E
is also nullable; no more nullables. We then extend the grammar by nulling all
nullables:

T → S
S → cE | aDb | c | ab
D → Sc | ε | aE | a
E → bE | DD | b | D | ε .

We then remove all forbidden epsilon productions.
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T → S
S → cE | aDb | c | ab
D → Sc | aE | a
E → bE | DD | b | D .

We now see the chain rules: T → S and E → D. Subsequently, the grammar is
extended by pushing forward along the chain rules:

T → S
S → cE | aDb | c | ab | cD
D → Sc | aE | a | aD
E → bE | DD | b | D | bD .

Finally, all forbidden chain rules are removed:

T → S
S → cE | aDb | c | ab | cD
D → Sc | aE | a | aD
E → bE | DD | b | bD .

This grammar is indeed productive.

Exercise 3 (10 %). Consider the alphabet Σ = {a, b, c} and the nondeterministic
finite state machine M with ε-transitions, with the state diagram:

-

6 6

• •

• •
@
@
@
@
@@R

�

? �	

�	

�

�

c b ε a

ε

c

c
q0

m
q2

q1

q3

Use the standard algorithm to determine the transition table of an equivalent de-
terministic finite state machine. Indicate the start state and the accepting states.

Solution (writing i for qi)

delta a b c

-> {0,3} {0,1,3} {2} {3}

{0,1,3} {0,1,3} {2} {0,1,3}

* {2} {} {} {0,3}

{3} {0,1,3} {} {3}

{} {} {} {}

Exercise 4 (12 %). (a) Phrase the Pumping Lemma for regular languages.
(b) Given is the language L4 = {ww | w ∈ Σ∗} over the alphabet Σ = {a, b}. Prove
that this language is not regular.

Solution (a: 3%) Let L be a regular language. Then there is a number k, such
that every string z ∈ L with |z| ≥ k can be split into three substrings z = uvw such
that |uv| ≤ k and v 6= ε, and uviw ∈ L for every i ≥ 0.

(b: 9%) Proof by contradiction. Assume that L4 is regular. Then there is a
number k as in the lemma.

Consider the string z = akbakb. It is clear that z ∈ L4 and that |z| = 2k+2 ≥ k.
The lemma therefore implies that z has a splitting z = uvw such that |uv| ≤ k and
v 6= ε, and uviw ∈ L for every i ≥ 0. As akbakb = uvw and |uv| ≤ k, the substring
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uv is contained in the prefix ak. As v 6= ε, it follows that v = am for some number
m > 0. Taking i := 2, we get z2 = uv2w ∈ L. This implies z2 = ak+mbakb = xx
for some string x ∈ Σ∗. As nb(z2) = 2 and z2 = xx, the string x contains only one
symbol b. As z ends with b, string x ends with b. This implies that ak+mb = x = akb,
and hence m = 0, a contradiction. Therefore, L4 is not regular.

Exercise 5 (11 %). Consider the language L5 over Σ = {a, b, c} given by

L5 = {w ∈ Σ∗ | nb(w) ≤ 1 + nc(w)} .

Construct a simple pushdown machine M5 that accepts the language L5. Give the
state diagram, and give convincing arguments that the language accepted by M5

indeed equals L5.

Solution While scanning the input string, we need to keep track of the number of
additional symbols b or c that have yet to be read to have equality nb(w) = 1+nc(w).
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The machine first pushes a symbol B onto the stack. In state q1, it preserves the
invariant nb(w) + nB(γ) ≤ 1 + nc(w) + nC(γ), where w is the input read, and γ is
the current stack. When the machine accepts the input w, the invariant with empty
stack implies that w ∈ L5.

Conversely, if the input is w ∈ L5, the nondeterminism can preserve the invari-
ants nb(w) +nB(γ) = 1 +nc(w) +nC(γ) and γ ∈ B∗ ∪C∗, until the input has been
scanned completely. At that point the stack is of the form γ ∈ B∗, and the string
can be accepted after these Bs have been popped.

Exercise 6 (11 %). Consider the alphabet Σ = {a, b, c} and the language

L6 = {w ∈ Σ∗ | na(w) = 1 + 2 · nb(w)} .

Construct a simple always terminating Turing machine M with L(M) = L6. Give
the complete state diagram. Indicate in which states the computation can terminate
when the input does not belong to L6, why the machine always terminates, and why
it accepts the language L6.

Solution Recall that a simple Turing machine is deterministic and has a single
tape. In the input string, we count symbols a and b by replacing them by the tape
symbol c. We first need to replace one a, and subsequently, for every two symbols
a replaced, we replace one b, until the input is of the form c∗.
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In the state diagram, each self-loop terminates because it has a fixed direction: L
or R. In the cycle q0, q1, q4, q5, q6, two symbols a and one symbol b are replaced
by c. Therefore the machine terminates, and the difference na(w)−2nb(w) remains
constant. In the end, only one additional a needs to be replaced. Therefore, the
machine allows to exit the loop at q1.

In the states q0 and q1, the head moves to the right, and ensures that the string
to the left of the head contains no symbols a. It therefore only enters q2 when all
symbols a have been replaced. In q2, it then verifies that the input is of the form
c∗. If the input contains too many symbols b, execution ends in q2 with a b on the
tape.

In the lower row, the head first moves to the righthand end of the input string,
then moves left, replaces one symbol b, and subsequently moves to the lefthand end
of the input string. If there are too few symbols b, execution ends in q5 with a blank
on the tape.

Exercise 7 (12 %). Let L be a language over alphabet Σ, and let x and y be strings
over Σ.
(a) Assume L is decidable. Give the definition of this.
Prove that L′ = {w ∈ Σ∗ | xw ∈ L ∧ wy /∈ L} is decidable.
(b) Assume L is semi-decidable. Give the definition of this.
Prove that L′′ = {w ∈ Σ∗ | xw ∈ L ∨ wy ∈ L} is semi-decidable.

Solution (a) Decidability of L means that there is an always terminating simple
Turing machine M that accepts L. We construct an always terminating TM M ′

for L′. Machine M ′ is a 2-tape TM. It first copies the input w to the second
tape. Subsequently, it writes string x before w in tape 1 and string y after w on
tape 2. It places the tape heads on the first symbols of xw and wy, respectively.
Subsequently it executes machine M on both tapes, say one after the other. It
accepts w if and only if M accepts xw and rejects wy. As M always terminates, M ′

always terminates. It is clear that M ′ accepts L′. This proves that L′ is decidable.
(b) Semi-decidability of L means that there is a simple Turing machine M

that accepts L by termination only. We construct a TM M ′′ that accepts L′′ by
termination only. Machine M ′′ is a 2-tape TM. It first copies the input w to the
second tape. Subsequently, it writes string x before w in tape 1 and string y after w
on tape 2. It places the tape heads on the first symbols of xw and wy, respectively.
Subsequently it executes copies of machine M on both tapes on lock-step. Machine
M ′′ terminates when either machine M terminates on its own tape. Therefore the
language accepted by M ′′ is L′′. This proves that L′′ is semi-decidable.

Exercise 8 (10 %). The Lecture Notes describe how to encode a Turing machine
M ∈ TM0 by means of a string R(M), and they describe a universal Turing machine
that can simulate any Turing machine M thus encoded.
(a) Describe the class TM0 of the machines that can be encoded in this way, and
describe the encoding R(M) for an arbitrary machine M ∈ TM0.
(b) Describe the language LU accepted by this universal Turing machine in words
and in set notation.
(c) Is the language LU decidable? Is it semi-decidable? Justify your answers.

Solution (a: 4%) TM0 consists of the simple TMs over B that accept by termi-
nation only (i.e., without a set of accepting states). For such a machine M =
(Q,Σ,Γ, δ, q0), the encoding R(M) is a bit string, defined as follows. First, the
states of Q are numbered from n(q0) = 1, etc. ; next the tape symbols in Γ are
numbered with n(0) = 1, n(1) = 2, n(B) = 3, etc. The directions are numbe-
red n(L) = 1 and n(R) = 2. Now every transition δ(q,X) = [r, y, d] is encoded
1n(q)01n(X)01n(r)01n(Y )01n(d)00. The encoding of M is obtained by concatenating
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the encodings of the transitions of M , prefixing this with 00, and postfixing it with
a final 0. This has the effect that R(M) contains precisely one substring 000, and
this substring is at the end of the bit string.

(b: 4%) LU = {R(M)w |M ∈ TM0, w ∈ B∗ : w ∈ L(M)}.
LU consists of the bit strings R(M)w that consist of an encoding of some Turing
machine, say M , followed by an input string w such that M terminates on w.

(c: 2%) As LU is accepted by a TM, it is semi-decidable. Turing’s Halting
Theorem states that LU is not decidable.

Exercise 9 (12 %) Consider the language

L9 = {R(M) |M ∈ TM0 : 1001 ∈ L(M)}.

(a) Prove that the language L9 is not decidable.
(b) Is the language L9 semi-decidable? Justify your answer.

Solution (a: 9%) Proof by reduction to the Halting Theorem. Assume that L9

is decidable. Then there is a simple always terminating TM M9 that accepts L9.
We use M9 to construct an always terminating Turing machine K that accepts the
Halting language LU of the previous exercise.

For an input string u, machine K first verifies that u = R(M)w for some machine
M and some bitstring w, just like the UTM . Otherwise K rejects u. Subsequently,
K uses the encoding R(M) and string w to construct the encoding R(M ′) of a
machine M ′ ∈ TM0 that does the following. Given input v, it first erases its
input v on the tape, then writes w on the tape, and executes M of w. After the
construction of the bitstring R(M ′), machine K applies M9 with input R(M ′). As
M9 always terminates, K always terminates.

K accepts R(M)w
≡ M9 accepts R(M ′)
≡ 1001 ∈ L(M ′)
≡ M ′ terminates on 1001
≡ M terminates on w.

Therefore, K solves the Halting problem. This contradicts Turing’s Theorem. The-
refore L9 is not decidable.

(b: 3%) L9 is semi-decidable, because it is accepted by the following TM by
termination: the machine first verifies that its input is of the form R(M) for some
M ∈ TM0, then postfixes its input with the string 1001, and then applies the
universal Turing machine to the string. This accepts by termination if and only if
the input is in L9.




